“ AD=AO49 493 WISCONSIN UNIV MADISON HA'I'HEHA'I'ICS RESEARCH CENTER F/6 12/1
EFFICIENT COMPUTER MANIPULATION OF TENSOR PRODUCTS. (V)
NOV 77 C DE BOOR DlAOZ’-TH-OORl

WCLASSIFIED MRC=TSR=1810

END
fiLueo

s 28 25

o

“l“_——l— '

=k

[l L
= e

E22 flis e

MICROCOPY RESOLUTION TEST CHP&T
NATIONAL BUREAU OF STANDARDS-1963-1

el e e e e et

B A

E.
|
E:

MRC Technical Summary Report #1810

049493

EFFICIENT COMPUTER MANIPULATION
OF TENSOR PRODUCTS

Carl de Boor

=

'\. O§

.5

S

:&Q

= ‘_"Mathematics Research Center

i University of Wisconsin—Madison

610 Walnut Street :
Madison, Wisconsin 53706

November 1977

(Received October 6, 1977)

Approved for public release
Distribution unlimited

B O
Sponsored by (}P‘(ﬁ"" - .Sfi-

U.S. Army Research Office {1
P. 0. Box 12211 S 1978 (i}
Research Triangle Park "4
North Carolina 27709 25 B f;EU

ACESSICr o

Kng WAk 3 X
S Byt ¢

1113

WHANKOUICED ‘ UNIVERSITY OF WISCONSIN - MADISON
| JSTIFIGATION. ... MATHEMATICS RESEARCH CENTER
: ssnees ns
STl e EFFICIENT COMPUTER MANIPULATION

R e OF TENSOR PRODUCTS

el

3 h ; } | Carl de Boor
| |

Technical Summary Report #1810
November 1977

ABSTRACT

It is shown how to construct a modified version SUBi of a (presumably
efficient) subroutine SUBi for solving the linear system Aix =b , i=1,...,k,

so that the linear system

(Al®...®Ak):=<=l=>

i can be solved by just one call to each of the routines SUB; ¢ i=l,0.c,k. ‘Poly-
j ! nomial interpolation and spline interpolation in several variables are given as

examples.

AMS(MOS) Subject Classifications: 65D15, 41A63.
Key Words: Mathematical Software, Tensor product, Multivariate, Interpolation,
Approximation, Polynomial, Osculatory.

4 Work Unit Number 7 - Numerical Analysis.

\
il
o
=
20

=)

o
at —]{"—l
{

e
e
-
(I
co
W
-
o —- .
; ©
" -
H ©

Sponsored by the United States Army under Contract No. DAAG29~75-C-0024.

i T Ve o e o RO Ty —

—

SIGNIFICANCE ANL EXPLANATION

The tensor product of linear approximation schemes is a very convenient
rr matinematical construct to make efficient multivariate approximation schemes out
of univariate ones. For example, we might know that the coefficient vector a
for the polynomial

p(x) = Z ai pi(x)
]

which agrees with the function f at t .,tn can be computed as

17°°

a Bt (f(ti))

|
L
z
§
£
i
;
£
|
:

Then we know that

1 p(x,y)

g g aijpi(x)pj(y)

is a polynomial which agrees with the function £ at all the points (ti,uj) of
i a rectangular grid provided the coefficient matrix (aij) is computed from the

{ data matrix (f(ti,uj)) by

t

= o= T
(aij) > (BEG}BE) (f(ti,uj)) := B (f(ti'uj))(Bg) .

Such a construction can also be used to obtain interpolants to functions of three

or more variables, but explicit expressions for

(BB @Dee.® B Y (ECE: 0 p0eseZ))
tu 2z L] n

in terms of ordinary matrix multiplication are harder to come by and implement.

The report proposes a simple way of modifying a subroutine for calculating the
coefficient vector a from univariate data so that the construction of a tensor
product interpolant reduces to calling these modified univariate routines in
sequence. Somewhat surprisingly, this idea seems not to have been noticed before.

It makes the construction and evaluation of tensor product approximants an easy thing.

The responsibility for the wording and views expressed in this descriptive summary
{ lies with MRC, and not with the author of this report.

B

'!

- = > = A e e S e A s e A o T A 3 L P SR e

EFFICIENT COMPUTER MANIPULATION

OF TENSOR PRODUCTS

Carl de Boor

In [3], V. Pereyra and G. Scherer discuss the numerical solution of a linear system of

the form
e = (1
(a @ ¥ AJx =D)
with Ai an invertible matrix of order ni, i=1,...,k, and, correspondingly, both % and
b k-dimensional arrays, of size ny X n, X...xn . Such systems arise naturally when form-

ing tensor products of univariate interpolation schemes.

Pereyra and Scherer propose to store arrays such as

[[F3

and b with the last index
running fastest and then have a scheme of applying Ail, A;il and so on down to and includ-

ing Al

appropriately restoring the intermediate information so that application of
=l : ; s ; : :
Ai involves only repeated ordinary matrix multiplication to a vector stored in consecutive

L=

locations in memory. When, as is more reasonable, application of U; L; rather than of

Ai is wanted, with LiUi a triangular factorization for Ai’ a further complication

arises and is dealt with.

It is the purpose of this note to describe a different procedure which I have used for
some time and which is more direct and simpler than the Pereyra-Scherer procedure appears to
be.

We assume that, for each i, we have available a Fortran subroutine

SUBi(b,n,x)

which solves the i-th linear system Aix =b (of order n = ni) for %, given b. Pre-
sumably, the routine does this in an efficient way, taking advantage of any special

structure Ai might have such as bandedness, positive definiteness etc.

Sponsored by the United States Army under Contract No. DAAG29-75-C-0024.

b

e o

SRR

We further assume that the k-dimensional arrays x and b are (to be) stored in
Fortran fashion, i.e.,
i_‘(il’i = x(d

+n1(12-1 +n2(13-1 E +nk_1(1k-1)..)))

i) 1
if we refer to X also as an equivalent one-dimensional array.
The following simple procedure will then lead to an efficient way for solving (1): For

each 1, enlarge the subroutine SUBi to a subroutine
SUBi(b,n,m,x)

which solves simultaneously Aix =b for m given right sides b(:,1), b(*,2),...,b(*,m),
each of length n = n., and stores the corresponding solutions in x(1,°), x(2,*),...,x(m,*).

Thus, the dimension statement for the arguments b and x in SUB; reads

DIMENSION b(n,m), x(m,n)
and the change otherwise consists in putting every statement involving b or x appropriate-
ly into a DO loop. In this, care should be taken to leave statements which do not depend on
the particular right side outside such loops.

Many library routines for specific linear problems already provide this facility for
dealing with several right sides in one call, since the work in solving Aix = b for an
additional right side b is usually much less than the work for solving such a system the
first time. But such routines return the solution corresponding to the j-th column b(*,j)
of the input array customarily in the j-th column of the output array x and not, as I pro-
pose here, in the j-th row.

Lemma. For i=l,...,k, let SUBi be an expanded version, as described, of the routine

SUBi for solving Aix = b, and set

1= *p k%
N.nlnz..nk

Then, the following statements

=P

2 SN gy

b, := b

0
CALL SUBJ (b , n), N/n ., b))
CALL suaz(gl. n,. N/"z’ k__)z)
CA : ’ . ’

LL SUBk(p__k_1 n N/nk gk)
X := Db

.

will produce the solution x of (1)

Proof. Let X, be the k-dimensional array

x, = (A'®..0A ®10...01p ,
i=0,...,k. Then

L AR T T
(2)

= : g X :
= Ai __’Si_l(Jlr---'Ji_ll :Ji+1:---ljk)

and our assertion is proved if we can establish that Qk = X We prove this by showing
that, for all i, gi as generated by the succession of calls above is related to X, in

the following way:

If gi is interpreted as a k-dimensional Fortran array, of dimension

‘ni+1""’nk'nl""'ni)’ then
gi(ji+1""’jk'j1""'ji) = §i(j1""'jk)' all 1 ' (3)
Egg i=0,...,k. For i =k, (3) is indeed the desired statement that gk = ék .
Now, (3) holds for i=0 because of the initial assignment 20 := b. Assuming (3) to

hold for i<v, we consider the action of the

L
CALL SUBV(Qv_l,nv,N/nv,gv) .

SUB; considers gv_l to be a two-dimensional array, b say, of dimension (nv.N/nv).

Thus, with

=3=

Tyl el

we have

b(-,s)

L}
.
~
[
—
~
.
~
-
P
-~
T
—
-

(4)

by induction hypothesis. SUB; then applies A;l to each of these m = N/nv nv-vectors

b(«,s), thus obtaining the corresponding nv-vector

Ay el e .Jv+1..--.3k) ' ’

1%

by (2) and (4), and stores this vector in

x(s,+) = gv(s + (N/nv)(* =1))

=b (3 +0 =) &c..+p (3

Byyi *ye1 ldvs2 v-2 =) b (N/DL Y s =)

=b

b V+la---l3k131'-.»:3

v-1
which proves (3) for i = v and so advances the induction hypothesis; Q.E.D.
We introduced the auxiliary arrays only for argument's sake. 1In calculations, two arravs,

say 21 and 92, are sufficient, with 91 serving in place of all 21 with 1 odd, and

22 serving for all the others.

1 Also, in typical situations, the various subroutines SUB1 P SUBk are, in fact,

just one routine called with additional arguments which differ with i. 1In such a case, only

i one extended version has to be written.
3 Finally, we put the above discussion in terms of solving a linear system, i.e., in terms
F of premultiplying a given vector by the inverse of a given matrix. We did this in order to

make the point that we do not require the matrix by which we wish to premultiply to be pre-

; sent explicitly. Any Fortran subprogram SUBi(b,x) which has the effect of forming

X = Bib for given b can serve as a basis for an extended version SUBi(b,n.m,x) suitable
for the calculation of (B1 e... G)Bk)p, and the matrices Bi need not be square. We state

i this slight extension of the Lemma as a corollary for the record.

N,

Corollary. For L PR U 7 Bi be a (ni,rl)—matrix, and let SUB;(b,r.i,m,x,r1

be a subroutine which, for 3j=1,...,m, forms the ri~vector Bib(-,j) (in some manner)

from the ni-!yctor b(+,3), and stores it in x(j,). Then, the following statements

2 "B

m := nz*...'nk

CALL SUBi(go, n,eom, 21' rl)

m := m*rl/n2

CALL 5035(21' n,, m, 22, r2)

m := m*r2/n3

CAL; SUBL(Ex—l' o, m, gk' rk)

3 =B :

form the k-dimensional array x = (BIQD] B,)b.

It is not even necessary that Bi be a matrix, i.e., a two-dimensional array. The more
general situation in which Bi is a linear map which associates si-dimensional arrays with
ti-dimensional arrays is covered by the corollary as well since we can always interpret such
si-dimensional and ti-dimensional arrays Fortran fashion as equivalent one-dimensional arrays.

We give some simple examples in the next section.

Tensor groducts of univariate intergglation schemes. The following material concerning

tensor products of univariate interpolation schemes is well known and is mentioned here only
in order to illustrate the use and usefulness of the simple idea expounded earlier. (A
simple account giving proofs and details can be found, e.g., in [1].)

The construction of a (univariate) linear interpolant g to some function f usuallv

involves the calculation of the coefficients a = (ai) in a representation

for the interpolant from certain information (Aif) about f. Here, each Xi is a linear

functional, e.g.,

(x.)

1 -
ME =) or A Ef=¢ (x;) or) f= [y (x)f(x)Iax etc.

and g is so constructed that

At the level of the present discussion, there is ho reason to require the representation for
g to be irredundant, i.e., to require the sequence (wi) to be linearly independent. All
that is necessary is the assumption that

a = B(Aif)

for some matrix B. The matrix B is commonly not known explicitly (although it could, of

course, be determined). Rather, some procedure or subprogram SUB is available which trans-
forms the vector (Aif) of data appropriately into the vector a of coefficients.
For example, consider the construction of the polynomial p = Pe of degree < n which

agrees with f at the n distinct points XpreeesXo. In its Newton form, Pe looks like

n n
p.(x) = S o 5 A (x - x.) (5)
£ lzl i n j=i+l 3
with the coefficient Ixi,...,xn]f the so-called divided difference for f at the points
LI R I e R
i n
f(xi) e g |
[%, re-p%,1E == (6)
i j

([x ..--.xj]f = [xi.--..xj_llf)/(xj—xi), e

i+l
These coefficients can therefore be determined as final entries in a so-called divided

difference table, for instance as in the following subprogram

s At B st

SUBROUTINE POLINT (X, F, N)
DIMENSION X(N),F(N)
NM1l = N-1
IF (NM1 .LE. 0O) RETURN
DO 10 K=1,NMl
NMK = N-K

DO 10 1=2,NMK

10 B(I) = (F(I+L) ~ BTN/ CRCIERY = (1))
END RETURN
Here, the array F contains F(i) = f(xi), i=l,...,n, on input and F(i) = [xi,...,xn]f,
i=1,...,n, on output. (For details concerning divided differences and the Newton form (5),

see, e.g., [2].)

Once the coefficient vector a in the representation Ziai¢i for the interpolant g
has been determined, one may evaluate g in various ways. Typically, one then wants to find
Ag for various linear functionals) such as)Ag = g(x), some x, or g = g(j)(x). or
Ag = f Yg for some Y, etc. . All of these values can be obtained from the vector
a = (ai) by applying to it a matrix consisting of just one row, viz. the matrix
[Nﬂl, sz, ... 1. Thus evaluation of the interpolant at some linear functional) 1is just
another linear procedure or subproaram which applies some matrix B to the vector a.

For example, the evaluation of the interpolating polynomial (5) at some point x = ARG
proceeds customarily by Nested Multiplication, as in the following function subprogram

FUNCTION POLVAL (X, F, N, ARG)

DIMENSION X(N), F(N)

POLVAL = F(1)

IF (N .LE. 1) RETURN
DO 10 K=1,N
10 POLVAL = POLVAL*(ARG-X(K)) + F(K)
RETURN
END

Note that, once again, the matrix B to be applied to the coefficient vector a [(in the
array F) 1is not formed explicitly.

Suppose now that we have, for each of the k independent variables ¢t A |

1778y

linear interpolation scheme. This means that, for r=1,...,k, we have a matrix Br which

: s r bl r r ’ "
associates with each data vector (Aif) a coefficient vector (ai) = Br(llf). giving the
interpolant qr = ziaici - foy £ = f(tr). Further, for all appropriate integer vectors

'
i= (i .,ik), let Ai be a linear functional on some appropriate class of functions f

pree

of k variables for which

Yof = fl)Ui £,)00-0F £)
&) 7 k

™}

whenever

f(t ...,tk) = fl(tl)fz(tz)...fk(tk) o ALk tl,...,tk

1’

b
For example, if k = 3 and A f = f(a), M f = £°(8) and x’;f = jarfmdt, then

>
r
Aer,0,05% = Llogeon.a)
b
3 2
Ya,2,mf = ja3 (8/3t)) “fla),8,,t) dt,
i S
Xz,2,1yF o= (2 /3%, 9E)E(B,,8,,0,)
would serve. Also, let
L e TR L SV L T LT
= 1 2 Kk
Then we can construct an interpolant
S z alwi
=1 & =

for a function f of the k variables ¢t .,tk as follows: Calculate the k-dimensional

array a = (ai) as

= (B

no

1® v & sk)n.:if)

g

from the k-dimensional array (\if) of data. This function g is then indeed an inter-

polant to f in the sense that

Xiq = Xif e Akl 1
The calculation of the coefficient array a is, of course, easily effected as described in
the corollary above.

To follow up on the example of polynomial interpolation, an appropriately extended ver-

sion POLNTE of the subprogram POLINT would require a separate output array, D say, for

the calculated divided differences. Otherwise, only the statement labelled 10,
10 F(I) = (P(I+l) - F(I))/Z(X(IPK) ~ X(I))

needs to be put into an additional loop over the data sets, with the difference X(IPK) - X(I)
calculated outside that loop, of course. We get
SUBROUTINE POLNTE (X, F, N, M, D)
DIMENSION X(N) ,F(N,M),D(M,N)
Do 5 I1=1,N
DO 5 J=1,M
5 D(J,I) = F(I,J)
NMl = N-1
IF (NM1 .LE. 0) RETURN
DO 10 K=1,NM1
NMK = N-K
DO 10 I=1,NMK
DIFF = X(I+K) - X(I)
DO 10 J=1,M

10 D(J,I) = (D(J,I+1)~-D(J,I))/DIFF
RETURN

END

Note that this routine functions appropriately even for M = 1, the only difference com-
pared to POLINT being that the output is now to be found in D and not in F. Note
further that it takes N(N-1)/2 adds and divides per data set to form S(Aif). Since the
matrix B_l is upper triangular in this case, explicit application of B by backsubstitu~
tion would take no fewer operations and would require the generation and storage of B (or
its inverse).

Now, to illustrate the lemma and its corollary, suppose that we require the polynomial

interpolant p = p(x,y,z) to data

f(xi,yj,z You; i=1,...,nx; j=1,...,ny; k=1, vcm 5

k 2

We load f(xi,yj,zk) into FB(i;3.k), X into X(i), yj into Y(j) and 2, into z(k),
for all appropriate 1i,j,k. Then

N := n *n *n

Xy 2
CALL POLNTE (X, F, nx, N/nx, D)
CALL POLNTE (Y, D, ny, N/ny, F)

CALL POLNTE (Z, F, n_, N/“z' D)

to get the appropriate polynomial coefficients of the polynomial interpolant p into the
3-dimensional array D.

If we wish to evaluate this interpolant at some point (x%,y,z), we have to procure an
extended version of the function routine POLVAL. The output for such a routine will consist
now of more than one number, we must therefore give up on having a function. Otherwise, it
is again only the assignment statement POLVAL = F(1) and statement 10 which need to be put

into a loop over the data sets. Here is an extended version POLVLE of POLVAL.

-10-

SUBROUTINE POLVLE (X, D, N, M, ARG, VALUE)
DIMENSION X(N),D(N,M),VALUE (M)
DO 5 J=1,M

5 VALUE(J) = D(1,J)

IF (N .LE. 1) RETURN

DO 10 K=2,N
FACTOR = ARG - X(K)
DO 10 J=1,M

10 VALUE (J) = VALUE(J) *FACTOR + D(X,J)
RETURN

END

Now, to find p(x,v,z) ,

CALL POLVLE (X, D, n. N/nx, X, TEMP1)
CALL POLVLE (Y, TEMP1, ny, n_. y, TEMP2)

CALL POLVLE (Z, TEMP2, n_, 1, 2, ANSWER)

to get p(x,y,2) = ANSWER. Note that TEMP1 must be of size ny*nz and contains the

necessary information to evaluate the bivariate polynomial p(x,y,z) for any choice of vy

2 and z. Again, TEMP2 is of size n, and contains the appropriate coefficients of the
polynomial p(x,y,z) in the single variable z. In particular, if p is to evaluated at
all points of a regular grid, it is most efficient to evaluate p along lines parallel to
the z-axis.

As an example of some of the difficulties one might encounter, we now discuss briefly
osculatory polynomial interpolation. Here, the interpolant is again of the form (5), but
now some of the interpolation points Xyreee X might coincide. This requires an exten-
sion of (6) which reads as follows: 3

e 2 =) B : : g
[xi,...,xj]f = f (xi)/(J Byl R % i Xt = e (6a)

i j l

By insisting that, for given data points x <X . we have

10

=-11- 3

X, = x, implies x,6K = x. S R
i j P i i+l i

(6) and (6a) cover all eventualities. The point of this extension is that now pg agrees
with f in the sense that

p(r)(z) = f(r)(z, in case the number 2z appears (at least) r +)

im0
g i

times in the sequence x
This explains the term "osculatory".
The following program for the construction of the coefficients in (5) 1s based on (6)

and (6a) and can be found, in somewhat different notation, in [2].

SUBROUTINE POLOSC (X, F, N)
INPUT MUST SATISFY THE FOLLOWING.
IF X(I-1) .NE. X(I) = X(I+J) .NE. X(I+J+l), THEN
X(I+L) = X(I) AND F(I+L) = (D**L)F(X(I)), L=0,...,J

0 a0 0 0

(HERE, X(0), X(N+1) .NE. X(I), I=1,...,N, BY DEFINITION.)
DIMENSION X(N) ,F(N)
NM1l = N-1
IF (NM1) .LE. 0) RETURN
DO 10 K=1,NMl
FLOATK = K
NMK = N-K
FLAST = F(1)
DO 9 I=1,NMK
DX = X(I+K) - X(I)
IF (DX .EQ. 0.) GO TO 7
F(I) = (F(I+l) - FLAST)/DX
FLAST = F(T+1)
GO TO 9
F(I) = F(I+l)/FLOATK
9 CONTINUE
10 F(NMK+1) = FLAST
RETURN
END

The construction of an efficient extension of POLOSC is made difficult by the fact

that the local variable FLAST depends on the data F but is active through various

P

T T T T S ey T = I e

statements which are independent of the data F and should therefore not be put inside a
loop over the various data sets. One way out is to make FLAST an array of length M,
either local or as an argument, which then requires the four groups of statements

FLAST = F(1)

F(I) = (F(I+1) ~ F(I))/DX ; FLAST = F(I+1)
F(I) = F(I+l)/FLOATK

F(NMK+l) = FLAST

each be put into a loop over the different data sets.

An alternative way consists in a reorganization of the entire calculation which avoids
the temporary saving of terms which depend on F, possibly at the cost of a slight increase
in F-independent work. For the record, here is such a subprogram. Note that the input in-
formation in F is to be arranged differently, too.

SUBROUTINE POLSCN (X, F, N)

C INPUT MUST SATISFY THE FOLLOWING.

C IF X(I-1) .NE. X(I) = X(I+J) .NE. X(I+J+l), THEN

C X(I+L) = X(I) AND F(I+L) = (D**(J-L))F(X(I)), L=0,...,J.
C (HERE, BY DEFINITION, X(0), X(N+l) .NE. X(I),I=1,...,N.)

DIMENSION X(N),F(N)
NM1 = N-1
IF (NM1 .LE. 0) RETURN
DO 3 NEXTP1=2,N
IF (X(NEXTPl) .NE. X(1)) GO TO 4
3 CONTINUE
NEXTP1 = N+1
4 DO 10 Kk=1,NM1
NEXT = NEXTP1l-1
FLOATK = FLOAT(K)

NMK = N-K

DO 9 1I=1,NMK
IF (NEXT .EQ. I) GO TO 5
F(I) = F(I)/FLOATK

%]

NEXT = NEXT+1
IF (NEXT .GT. NMK) GO TO 7
IF (X(NEXT+K) .EQ. X(NEXT)) GO TO S

7 F(I) = (F(NEXT) - F(I))/(X(I+K) - X(I))
9 CONTINUE
10 NEXTP1 = MAXO (2,NEXTP1-1)
| RETURN
END

We do not bother to carry out here the extension of this routine because it is straight-
forward. Aside from an initial transfer of F(i,j) to D(j,i), all 1i,j, only two state-
ments,
F(1)
F(I)

F(I)/FLOATK
(F(NEXT) - F(I))/(X(I+K) - X(I))

need to be put into a loop over the data sets, with the difference X(I+K) - X(I) formed
outside such a loop (and, of course, F replaced by D(j,.)) .

We close with an example in which the "matrix" B is three-dimensional, taking vectors
to matrices, viz. complete cubic spline interpolation. A typical implementation of this

scheme (see, e.g., [2]) starts off with an array C, of dimension (4,n+l), which contains

the following information initially:

C(1;1) f(xi), i=1; < sahitl

c(2,1)

£° (%), €2, ntl) = £'Ux o)
n+

1 1
This says that the data (Xif) about £ in this scheme consist of the vector
(f(xl)....,f(x

), f'(xl), f'(xn+). After passing through a subroutine

n+1l 1)
SPLINE (X, C, N) ,

the array C contains the coefficients of the polynomial pieces which make up the inter-

polating cubic spline, i.e.,

(=1)
g]

c(j,i) = (xi)/(j~1)!, JuLsueopd a0 fml,.ooon s

For an extended version, it would seem reasonable to introduce a separate input array,

F say, with

=14

-
£ b gt by e b cra L e o L SRR bl e e i o s s) Bl

Lakas s o 1and

|
|

s

(F(1) ,:..,F(n+l)) = ‘f(xl)""'f(xn+l,' £ (xl), f (xn+l)) .

E 1 The calling statement of the extended version then might be
SPLNEE (X, F, N+3, M, C, N)
with F and C dimensioned internally as
E | F(N+3,M), C(M,4,N) .

Thus, if SPLNEE is used as SUB; in the corollary above, then
n, = N+3 , r, = 4*N
i 3

n+l T*l, would be carried

Consequently, bicubic spline interpolation, on a mesh (xi)1 by (yj)
out by

CALL SPLNEE (X, F, n+3, m+3, C, n)

CALL SPLNEE (Y, C, m+3, 4*n, F, m)

with F initially of dimension (n+3, m+3) and containing the data

et e S A e e A S T

Ff(xl'yﬁ L T £ oy ery) fy("l'ym+1”
E | Z I f :

F = / . .
¥ f(xn+1'y1) e f(xn+1' m+1) fy(xn+1'y1) fy(xn+1’ym+1)
: £ By e B0 Ve Bty Sy Myeia!
: \fx(xn+1'y1) A t-x(xn-»l' m+1)fxy(xn+1'yl,fxy(xn+1' m+1U

After the two calls, F contains the polynomial coefficients of the interpolating

bicubic spline,

F(i+l,r,j+l,s) = (B/Bx)l(a/ay)Jg(xt.ys). 113=0,...,3

(7) i
ol ccoolly B%Li.eosl]

Note the difference between this way of storing the coefficients and the customary way

followed by the various available routines which return the coefficients in some array COEF

containing

alG=

4 COEF(i,}.x.5) = Fli,r.3.8) .

The coefficient array F, organized as in (7), lends itself easilvy to evaluation by extend- *
ed univariate evaluation routines.

. In summary, the approach to tensor products advocated here allows one to do the detail- '

ed programming work in the univariate context. The resulting programs are then strung
together to give or evaluate a tensor product interpolant (or, effect multiplicatirn by a
tensor or Kronecker product of matrices) with an ease which mirrors the ease of the mathema-

tical construction of tensor products.

REFERENCES

C. de Boor, Appendix to 'Splines and Histograms' by I. J. Schoenberg, MRC TSR #1273,
October 1972; in "Spline Functions and Approximation Theory", A. Meir & A. Sharma eds.,
Birkhauser Verlag, Basel, 1973, 329-358.

S. Conte & C. de Boor, "Elementary Numerical Analysis. 2nd Edition", McGraw-Hill, New
York, 1972.

V. Pereyra & G. Scherer, Efficient Computer Manipulation of Tensor Products with Appli-

cations to Multidimensional Approximation, Math. Comp. 27 (1973) 595-605.

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
REPO @M 2. GOVT ACCESSION NO.[3. RECIPIENT'S CATALOG NUMBER
STSE
8 N\Rﬂ T ——
o A .
4. TITLE (and Subtitle) i eghmiwwmoo cov:aleg L
(C}{EFFICIENT COMPUTER MANIPULATION OF TENSOR ummary Kepette[no specific
=1 |PRODUCTS - - £ reporting period
4 i) 2 6. PERFORMING ORG. REPORT NUMBER

3 7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)
§ qpicarl fle Boor (D[DAAG29-75-C-8024 |
g /
E #. PERFORMING ORGANIZATION NAME AND ADDRESS 10. :sggR.AgoianinsrrT.“Fuﬂuoangg. TASK
Mathematics Research Center, University .Of Gt Tt S F =
k 610 Walnut Street Wisconsin Numerical Analysis
§ Madison, Wisconsin 53706

11. CONTROLLMG OFFICE NAME AND ADDRESS < 12. REPORT D
E U. S. Army Research Office (D [Nov emivem=ts 77
: P.O. Box 12211 13. NUMBER or PAGE

Research Triangle Park, North Carolina 27709 lli E 2
; . MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office) 15. SECURITY CLASS. (of this
f
§ UNCLASSIFIED
" 1Sa. DECL ASSIFICATION/ DOWNGRADING
3 SCHEDULE
r" 16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abatract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

| 19. KEY WORDS (Continue on reverse side if necessary and identify by block number)
i Mathematical Software, Tensor product, Multivariate, Interpolation,

Approximation, Polynomial, Osculatory.

\\ zd

20. ETRACT (Continue on reverse side if necessary and identify by block number)
It is shown how to constru¢t a modified version §pBi of a (presumably

efficient) subroutine SUB for solving the linear system Aix = b , i=l,..c:k,
so that the linear system w ="
A % ...@a)x=0b SRR i

2can be solved by just one call to each of the subroutines SOBY . i=1,...,k.
polynomial interpolation and spline interpolation in several variables are
given as examples.

E DD , 5%'5s 1473 EOITION\OF 1 NOV 68 IS OBSOLETE UNCLASSIFIED

1 SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

a2l 200 Top

i e ——

—

